Bill Hill Bill Hill
0 Course Enrolled • 0 Course CompletedBiography
AWS-Certified-Machine-Learning-Specialty絶対合格、AWS-Certified-Machine-Learning-Specialty出題内容
さらに、Tech4Exam AWS-Certified-Machine-Learning-Specialtyダンプの一部が現在無料で提供されています:https://drive.google.com/open?id=1UTFhUyLJi2nbqgVMR8HpAc9DS-Trbaxm
あなたはこのような人々の一人ですか。さまざまな資料とトレーニング授業を前にして、どれを選ぶか本当に困っているのです。もしそうだったら、これ以上困ることはないです。Tech4Examはあなたにとって最も正確な選択ですから。我々はあなたに試験問題と解答に含まれている全面的な試験資料を提供することができます。Tech4Examの解答は最も正確な解釈ですから、あなたがより良い知識を身につけることに助けになれます。Tech4Examを利用したら、AmazonのAWS-Certified-Machine-Learning-Specialty認定試験に受かることを信じています。それも我々が全てのお客様に対する約束です。
AWS-Certified-Machine-Learning-Specialty 試験を受験するためには、候補者は AWS サービスを使用して機械学習ソリューションを設計および実装する経験が少なくとも1年ある必要があります。また、教師あり学習や教師なし学習、ディープラーニング、ニューラルネットワークなどの機械学習の概念をしっかりと理解している必要があります。
>> AWS-Certified-Machine-Learning-Specialty絶対合格 <<
AWS-Certified-Machine-Learning-Specialty出題内容、AWS-Certified-Machine-Learning-Specialty無料過去問
学習資料が時代に遅れないようにしながら、AWS-Certified-Machine-Learning-Specialty学習の質問をより専門的にするために多数の専門家を選択しました。もちろん、必要な情報を取得するためにすべてを行っており、より迅速に進めることができます。また、AWS-Certified-Machine-Learning-Specialty試験トレーニングプロフェッショナルからいつでもサポートを受けることができます。私たちは、AWS-Certified-Machine-Learning-Specialtyテストガイドの専門家の助けを借りて、確実に非常に良い経験を得ることを確信できます。優れた材料と方法は、より少ない労力でより多くの成果を上げるのに役立ちます。 AWS-Certified-Machine-Learning-Specialtyテストガイドを選択して、成功に近づけましょう!
Amazon AWS Certified Machine Learning - Specialty 認定 AWS-Certified-Machine-Learning-Specialty 試験問題 (Q80-Q85):
質問 # 80
A financial services company is building a robust serverless data lake on Amazon S3. The data lake should be flexible and meet the following requirements:
* Support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum.
* Support event-driven ETL pipelines.
* Provide a quick and easy way to understand metadata.
Which approach meets trfese requirements?
- A. Use an AWS Glue crawler to crawl S3 data, an AWS Lambda function to trigger an AWS Glue ETL job, and an AWS Glue Data catalog to search and discover metadata.
- B. Use an AWS Glue crawler to crawl S3 data, an AWS Lambda function to trigger an AWS Batch job, and an external Apache Hive metastore to search and discover metadata.
- C. Use an AWS Glue crawler to crawl S3 data, an Amazon CloudWatch alarm to trigger an AWS Batch job, and an AWS Glue Data Catalog to search and discover metadata.
- D. Use an AWS Glue crawler to crawl S3 data, an Amazon CloudWatch alarm to trigger an AWS Glue ETL job, and an external Apache Hive metastore to search and discover metadata.
正解:A
解説:
To build a robust serverless data lake on Amazon S3 that meets the requirements, the financial services company should use the following AWS services:
* AWS Glue crawler: This is a service that connects to a data store, progresses through a prioritized list of classifiers to determine the schema for the data, and then creates metadata tables in the AWS Glue Data Catalog1. The company can use an AWS Glue crawler to crawl the S3 data and infer the schema, format, and partition structure of the data. The crawler can also detect schema changes and update the metadata tables accordingly. This enables the company to support querying old and new data on Amazon S3 through Amazon Athena and Amazon Redshift Spectrum, which are serverless interactive query services that use the AWS Glue Data Catalog as a central location for storing and retrieving table metadata23.
* AWS Lambda function: This is a service that lets you run code without provisioning or managing servers. You pay only for the compute time you consume - there is no charge when your code is not running. You can also use AWS Lambda to create event-driven ETL pipelines, by triggering other AWS services based on events such as object creation or deletion in S3 buckets4. The company can use an AWS Lambda function to trigger an AWS Glue ETL job, which is a serverless way to extract, transform, and load data for analytics. The AWS Glue ETL job can perform various data processing tasks, such as converting data formats, filtering, aggregating, joining, and more.
* AWS Glue Data Catalog: This is a managed service that acts as a central metadata repository for data assets across AWS and on-premises data sources. The AWS Glue Data Catalog provides a uniform repository where disparate systems can store and find metadata to keep track of data in data silos, and use that metadata to query and transform the data. The company can use the AWS Glue Data Catalog to search and discover metadata, such as table definitions, schemas, and partitions. The AWS Glue Data Catalog also integrates with Amazon Athena, Amazon Redshift Spectrum, Amazon EMR, and AWS Glue ETL jobs, providing a consistent view of the data across different query and analysis services.
References:
* 1: What Is a Crawler? - AWS Glue
* 2: What Is Amazon Athena? - Amazon Athena
* 3: Amazon Redshift Spectrum - Amazon Redshift
* 4: What is AWS Lambda? - AWS Lambda
* : AWS Glue ETL Jobs - AWS Glue
* : What Is the AWS Glue Data Catalog? - AWS Glue
質問 # 81
A Machine Learning Specialist previously trained a logistic regression model using scikit-learn on a local machine, and the Specialist now wants to deploy it to production for inference only.
What steps should be taken to ensure Amazon SageMaker can host a model that was trained locally?
- A. Serialize the trained model so the format is compressed for deployment. Tag the Docker image with the registry hostname and upload it to Amazon S3.
- B. Build the Docker image with the inference code. Configure Docker Hub and upload the image to Amazon ECR.
- C. Build the Docker image with the inference code. Tag the Docker image with the registry hostname and upload it to Amazon ECR.
- D. Serialize the trained model so the format is compressed for deployment. Build the image and upload it to Docker Hub.
正解:C
解説:
To deploy a model that was trained locally to Amazon SageMaker, the steps are:
Build the Docker image with the inference code. The inference code should include the model loading, data preprocessing, prediction, and postprocessing logic. The Docker image should also include the dependencies and libraries required by the inference code and the model.
Tag the Docker image with the registry hostname and upload it to Amazon ECR. Amazon ECR is a fully managed container registry that makes it easy to store, manage, and deploy container images. The registry hostname is the Amazon ECR registry URI for your account and Region. You can use the AWS CLI or the Amazon ECR console to tag and push the Docker image to Amazon ECR.
Create a SageMaker model entity that points to the Docker image in Amazon ECR and the model artifacts in Amazon S3. The model entity is a logical representation of the model that contains the information needed to deploy the model for inference. The model artifacts are the files generated by the model training process, such as the model parameters and weights. You can use the AWS CLI, the SageMaker Python SDK, or the SageMaker console to create the model entity.
Create an endpoint configuration that specifies the instance type and number of instances to use for hosting the model. The endpoint configuration also defines the production variants, which are the different versions of the model that you want to deploy. You can use the AWS CLI, the SageMaker Python SDK, or the SageMaker console to create the endpoint configuration.
Create an endpoint that uses the endpoint configuration to deploy the model. The endpoint is a web service that exposes an HTTP API for inference requests. You can use the AWS CLI, the SageMaker Python SDK, or the SageMaker console to create the endpoint.
References:
AWS Machine Learning Specialty Exam Guide
AWS Machine Learning Training - Deploy a Model on Amazon SageMaker
AWS Machine Learning Training - Use Your Own Inference Code with Amazon SageMaker Hosting Services
質問 # 82
A Data Scientist is developing a machine learning model to classify whether a financial transaction is fraudulent. The labeled data available for training consists of 100,000 non-fraudulent observations and 1,000 fraudulent observations.
The Data Scientist applies the XGBoost algorithm to the data, resulting in the following confusion matrix when the trained model is applied to a previously unseen validation dataset. The accuracy of the model is
99.1%, but the Data Scientist has been asked to reduce the number of false negatives.
Which combination of steps should the Data Scientist take to reduce the number of false positive predictions by the model? (Select TWO.)
- A. Increase the XGBoost max_depth parameter because the model is currently underfitting the data.
- B. Increase the XGBoost scale_pos_weight parameter to adjust the balance of positive and negative weights.
- C. Change the XGBoost eval_metric parameter to optimize based on rmse instead of error.
- D. Change the XGBoost evaljnetric parameter to optimize based on AUC instead of error.
- E. Decrease the XGBoost max_depth parameter because the model is currently overfitting the data.
正解:B、D
解説:
* The XGBoost algorithm is a popular machine learning technique for classification problems. It is based on the idea of boosting, which is to combine many weak learners (decision trees) into a strong learner (ensemble model).
* The XGBoost algorithm can handle imbalanced data by using the scale_pos_weight parameter, which controls the balance of positive and negative weights in the objective function. A typical value to consider is the ratio of negative cases to positive cases in the data. By increasing this parameter, the algorithm will pay more attention to the minority class (positive) and reduce the number of false negatives.
* The XGBoost algorithm can also use different evaluation metrics to optimize the model performance.
The default metric is error, which is the misclassification rate. However, this metric can be misleading for imbalanced data, as it does not account for the different costs of false positives and false negatives.
A better metric to use is AUC, which is the area under the receiver operating characteristic (ROC) curve. The ROC curve plots the true positive rate against the false positive rate for different threshold values. The AUC measures how well the model can distinguish between the two classes, regardless of the threshold. By changing the eval_metric parameter to AUC, the algorithm will try to maximize the AUC score and reduce the number of false negatives.
* Therefore, the combination of steps that should be taken to reduce the number of false negatives are to increase the scale_pos_weight parameter and change the eval_metric parameter to AUC.
XGBoost Parameters
XGBoost for Imbalanced Classification
質問 # 83
A manufacturing company uses machine learning (ML) models to detect quality issues. The models use images that are taken of the company's product at the end of each production step. The company has thousands of machines at the production site that generate one image per second on average.
The company ran a successful pilot with a single manufacturing machine. For the pilot, ML specialists used an industrial PC that ran AWS IoT Greengrass with a long-running AWS Lambda function that uploaded the images to Amazon S3. The uploaded images invoked a Lambda function that was written in Python to perform inference by using an Amazon SageMaker endpoint that ran a custom model. The inference results were forwarded back to a web service that was hosted at the production site to prevent faulty products from being shipped.
The company scaled the solution out to all manufacturing machines by installing similarly configured industrial PCs on each production machine. However, latency for predictions increased beyond acceptable limits. Analysis shows that the internet connection is at its capacity limit.
How can the company resolve this issue MOST cost-effectively?
- A. Deploy the Lambda function and the ML models onto the AWS IoT Greengrass core that is running on the industrial PCs that are installed on each machine. Extend the long-running Lambda function that runs on AWS IoT Greengrass to invoke the Lambda function with the captured images and run the inference on the edge component that forwards the results directly to the web service.
- B. Use auto scaling for SageMaker. Set up an AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images.
- C. Set up a 10 Gbps AWS Direct Connect connection between the production site and the nearest AWS Region. Use the Direct Connect connection to upload the images. Increase the size of the instances and the number of instances that are used by the SageMaker endpoint.
- D. Extend the long-running Lambda function that runs on AWS IoT Greengrass to compress the images and upload the compressed files to Amazon S3. Decompress the files by using a separate Lambda function that invokes the existing Lambda function to run the inference pipeline.
正解:A
質問 # 84
A Machine Learning Specialist is designing a system for improving sales for a company. The objective is to use the large amount of information the company has on users' behavior and product preferences to predict which products users would like based on the users' similarity to other users.
What should the Specialist do to meet this objective?
- A. Build a collaborative filtering recommendation engine with Apache Spark ML on Amazon EMR.
- B. Build a model-based filtering recommendation engine with Apache Spark ML on Amazon EMR.
- C. Build a content-based filtering recommendation engine with Apache Spark ML on Amazon EMR.
- D. Build a combinative filtering recommendation engine with Apache Spark ML on Amazon EMR.
正解:A
解説:
A collaborative filtering recommendation engine is a type of machine learning system that can improve sales for a company by using the large amount of information the company has on users' behavior and product preferences to predict which products users would like based on the users' similarity to other users. A collaborative filtering recommendation engine works by finding the users who have similar ratings or preferences for the products, and then recommending the products that the similar users have liked but the target user has not seen or rated. A collaborative filtering recommendation engine can leverage the collective wisdom of the users and discover the hidden patterns and associations among the products and the users. A collaborative filtering recommendation engine can be implemented using Apache Spark ML on Amazon EMR, which are two services that can handle large-scale data processing and machine learning tasks. Apache Spark ML is a library that provides various tools and algorithms for machine learning, such as classification, regression, clustering, recommendation, etc. Apache Spark ML can run on Amazon EMR, which is a service that provides a managed cluster platform that simplifies running big data frameworks, such as Apache Spark, on AWS. Apache Spark ML on Amazon EMR can build a collaborative filtering recommendation engine using the Alternating Least Squares (ALS) algorithm, which is a matrix factorization technique that can learn the latent factors that represent the users and the products, and then use them to predict the ratings or preferences of the users for the products. Apache Spark ML on Amazon EMR can also support both explicit feedback, such as ratings or reviews, and implicit feedback, such as views or clicks, for building a collaborative filtering recommendation engine12
質問 # 85
......
IT職員のあなたは毎月毎月のあまり少ない給料を持っていますが、暇の時間でひたすら楽しむんでいいですか。Amazon AWS-Certified-Machine-Learning-Specialty試験認定書はIT職員野給料増加と仕事の昇進にとって、大切なものです。それで、我々社の無料のAmazon AWS-Certified-Machine-Learning-Specialtyデモを参考して、あなたに相応しい問題集を入手します。暇の時間を利用して勉強します。努力すれば報われますなので、Amazon AWS-Certified-Machine-Learning-Specialty資格認定を取得して自分の生活状況を改善できます。
AWS-Certified-Machine-Learning-Specialty出題内容: https://www.tech4exam.com/AWS-Certified-Machine-Learning-Specialty-pass-shiken.html
我々のAWS-Certified-Machine-Learning-Specialty学習指導資料を選んで、Amazon AWS-Certified-Machine-Learning-Specialty試験に100%合格します、教材の高い合格率は、当社の製品がすべての人々がAWS-Certified-Machine-Learning-Specialty試験に合格し、関連する認定を取得するために非常に効果的かつ有用であることを意味します、Amazon AWS-Certified-Machine-Learning-Specialty絶対合格 プライバシーのために、弊社は完備なセキュリティーシステムが作られます、Tech4Examは親切なサービスで、AmazonのAWS-Certified-Machine-Learning-Specialty問題集が質の良くて、AmazonのAWS-Certified-Machine-Learning-Specialty認定試験に合格する率も100パッセントになっています、では、我々社Tech4ExamのAWS-Certified-Machine-Learning-Specialty問題集を選んでみてくださいませんか。
半分ほど下げたウィンドウから、影浦さんの手が見えた、これは鷹尾にも秘密なんですが、実をいうと藤野谷さんとはこの会社に入る前から知り合いだったんです、我々のAWS-Certified-Machine-Learning-Specialty学習指導資料を選んで、Amazon AWS-Certified-Machine-Learning-Specialty試験に100%合格します。
試験の準備方法-認定するAWS-Certified-Machine-Learning-Specialty絶対合格試験-効果的なAWS-Certified-Machine-Learning-Specialty出題内容
教材の高い合格率は、当社の製品がすべての人々がAWS-Certified-Machine-Learning-Specialty試験に合格し、関連する認定を取得するために非常に効果的かつ有用であることを意味します、プライバシーのために、弊社は完備なセキュリティーシステムが作られます。
Tech4Examは親切なサービスで、AmazonのAWS-Certified-Machine-Learning-Specialty問題集が質の良くて、AmazonのAWS-Certified-Machine-Learning-Specialty認定試験に合格する率も100パッセントになっています、では、我々社Tech4ExamのAWS-Certified-Machine-Learning-Specialty問題集を選んでみてくださいませんか。
- 試験の準備方法-更新するAWS-Certified-Machine-Learning-Specialty絶対合格試験-便利なAWS-Certified-Machine-Learning-Specialty出題内容 🌤 ウェブサイト➤ www.it-passports.com ⮘を開き、➠ AWS-Certified-Machine-Learning-Specialty 🠰を検索して無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty合格記
- AWS-Certified-Machine-Learning-Specialty問題集、受験者たちの認可を得ているAmazon AWS-Certified-Machine-Learning-Specialty模擬試験 🦧 今すぐ✔ www.goshiken.com ️✔️で➽ AWS-Certified-Machine-Learning-Specialty 🢪を検索して、無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty資格勉強
- 試験の準備方法-効果的なAWS-Certified-Machine-Learning-Specialty絶対合格試験-認定するAWS-Certified-Machine-Learning-Specialty出題内容 🌻 ⮆ www.japancert.com ⮄に移動し、《 AWS-Certified-Machine-Learning-Specialty 》を検索して、無料でダウンロード可能な試験資料を探しますAWS-Certified-Machine-Learning-Specialty学習教材
- 認定するAWS-Certified-Machine-Learning-Specialty絶対合格 - 合格スムーズAWS-Certified-Machine-Learning-Specialty出題内容 | 高品質なAWS-Certified-Machine-Learning-Specialty無料過去問 AWS Certified Machine Learning - Specialty 🧨 ▛ www.goshiken.com ▟で➥ AWS-Certified-Machine-Learning-Specialty 🡄を検索し、無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty最新テスト
- 試験の準備方法-有効的なAWS-Certified-Machine-Learning-Specialty絶対合格試験-最新のAWS-Certified-Machine-Learning-Specialty出題内容 🍩 ⮆ www.topexam.jp ⮄には無料の➤ AWS-Certified-Machine-Learning-Specialty ⮘問題集がありますAWS-Certified-Machine-Learning-Specialty日本語資格取得
- AWS-Certified-Machine-Learning-Specialty資格勉強 💃 AWS-Certified-Machine-Learning-Specialty資格勉強 🐨 AWS-Certified-Machine-Learning-Specialty復習問題集 🏢 時間限定無料で使える▛ AWS-Certified-Machine-Learning-Specialty ▟の試験問題は✔ www.goshiken.com ️✔️サイトで検索AWS-Certified-Machine-Learning-Specialty無料問題
- AWS-Certified-Machine-Learning-Specialty試験対応 🚏 AWS-Certified-Machine-Learning-Specialtyソフトウエア 🐪 AWS-Certified-Machine-Learning-Specialtyミシュレーション問題 👵 検索するだけで“ www.it-passports.com ”から《 AWS-Certified-Machine-Learning-Specialty 》を無料でダウンロードAWS-Certified-Machine-Learning-Specialty日本語版対応参考書
- 最新のAWS-Certified-Machine-Learning-Specialty絶対合格試験-試験の準備方法-最高のAWS-Certified-Machine-Learning-Specialty出題内容 🧖 検索するだけで⮆ www.goshiken.com ⮄から☀ AWS-Certified-Machine-Learning-Specialty ️☀️を無料でダウンロードAWS-Certified-Machine-Learning-Specialty日本語資格取得
- 試験の準備方法-効率的なAWS-Certified-Machine-Learning-Specialty絶対合格試験-更新するAWS-Certified-Machine-Learning-Specialty出題内容 📶 ( www.xhs1991.com )から“ AWS-Certified-Machine-Learning-Specialty ”を検索して、試験資料を無料でダウンロードしてくださいAWS-Certified-Machine-Learning-Specialty資格取得講座
- 試験の準備方法-効果的なAWS-Certified-Machine-Learning-Specialty絶対合格試験-認定するAWS-Certified-Machine-Learning-Specialty出題内容 💬 ➤ www.goshiken.com ⮘で使える無料オンライン版“ AWS-Certified-Machine-Learning-Specialty ” の試験問題AWS-Certified-Machine-Learning-Specialty最新テスト
- AWS-Certified-Machine-Learning-Specialtyミシュレーション問題 📚 AWS-Certified-Machine-Learning-Specialty日本語版対応参考書 ☀ AWS-Certified-Machine-Learning-Specialtyリンクグローバル 🔔 ➠ www.jpexam.com 🠰サイトにて【 AWS-Certified-Machine-Learning-Specialty 】問題集を無料で使おうAWS-Certified-Machine-Learning-Specialtyリンクグローバル
- academy2.hostminegocio.com, mekkawyacademy.com, shortcourses.russellcollege.edu.au, ncon.edu.sa, ucgp.jujuy.edu.ar, elkably.com, smenode.com, ncon.edu.sa, ncon.edu.sa, courses.holistichealthandhappiness.com
P.S. Tech4ExamがGoogle Driveで共有している無料かつ新しいAWS-Certified-Machine-Learning-Specialtyダンプ:https://drive.google.com/open?id=1UTFhUyLJi2nbqgVMR8HpAc9DS-Trbaxm